Massive unexplored genetic diversity of the human microbiome

When you analyze extremely large datasets, you tend to be guided by your intuition or predictions on how those datasets are composed, or how they will behave. Having studied the microbiome for a while, I would say that my primary rule of thumb for what to expect from any new sample is tons of novel diversity. This week saw the publication of another great paper showing just how true this is.

Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle Resource


The Approach

If you are new to the microbiome, you may be interested to know that there are basically two approaches to figuring out what microbes (bacteria, viruses, etc.) are in a given sample (e.g. stool). You can either (1) compare all of the DNA in that sample to a reference database of microbial genomes, or (2) try to reassemble the genomes in each sample directly from the DNA.

The thesis of this paper is one that I strongly support: reference databases contain very little of the total genomic content of microbes out there in the world. By extension, they predict that (1) would perform poorly, while (2) will generate a much better representation of what microbes are present.

Testing this idea, the authors analyzed an immense amount of microbiome data (almost 10,000 biological samples!), performing the relatively computationally intensive task of reconstructing genomes (so-called _de novo_ assembly).

The Results

The authors found a lot of things, but the big message is that they were able to reconstruct a *ton* of new genomes from these samples — organisms that had never been sequenced before, and many that don’t really resemble any phyla that we know of. In other words, they found a lot more novel genomic content than even I expected, and I was sure that they would find a lot.


There’s a lot more content here for microbial genome afficianados, so feel free to dig in on your own (yum yum).

Take Home

When you think about what microbes are present in the microbiome, remember that there are many new microbes that we’ve never seen before. Some of those are new strains of clearly recognizable species (e.g. E. coli with a dozen new genes), but some will be novel organisms that have never been cultured or sequenced by any lab.

If you’re a scientist, keep that in mind when you are working in this area. If you’re a human, take hope and be encouraged by the fact that there is still a massive undiscovered universe within us, full of potential and amazing new things waiting to be discovered.